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Abstract—An elastic, plane and funicular circular arch loaded by uniformly distributed radial
pressure is considered. Fundumental buckling modes corresponding to two lowest criticul loads
both for out-of-plane and in-plane buckling of the arch are studied. Both depth and width of a
rectangular cross-section are treated as independent contro! functions. The optimization problem
determines these cross-sectional dimensions as the {unctional design variables in order to minimize
the total volume of the arch under given external pressure and geometrical constraints. Suitable
optimality conditions are derived using the Pontryagin maximum principle. The solution requires
a multimodal, even quadrimodal. formulation of the optimization problem to be introduced. Some
detailed numerical results are presented and advantages connected with the assumption of two
independent design variables are discussed.

L. INTRODUCTORY REMARKS

The optimal design of urches under stability constraints was the subject of many papers.
The book by Gajewski and Zyczkowski (1988) gives a broad review of such papers published
before 1986, The major part of them dealt with the unimodal formulation of the optimization
problem and with one design variable only.

The need for the bimodal formulation of the optimization problem for arches was
pointed out (Blachut and Gajewski, 1981a). A planc arch with an inextensible axis was
considered and only in-plane buckling was admitted. I out-of-planc loss of stability of such
an arch is admitted then, even bimodal formulation becomes insuflicient. This was shown
for a circular funicular arch with a rectangular cross-section where uni-, bi- or trimodal
formulation was required in order to solve the optimiziation problem (Bochenek and
Gajewski, 1986). That paper considered only one design variable namely cither one of
rectangle dimensions or both dimensions but with their ratio fixed.

This paper undertakes a new and more complicated problem, i.e. the optimal design
of an arch for which both depth and width of a rectangular cross-section are treated as two
independent design functions. The optimization problem of this kind was, for the first time,
investigated for a compressed column with a rectangular cross-section which can buckle in
two planes (Bochenck, 1987).

The arch is optimized against plane and spatial buckling and its axis is assumed to be
incxtensible. The influence of extensibility on the optimal design of a plane arch against in-
planc buckling was previously considered (Blachut and Gajewski, 1981b). Variations
were not taken into account whereas this problem for arches as multimodal was dealt with
by Olhofl and Plaut (1983).

2. MATHEMATICAL DESCRIPTION

An elastic. plane and circular arch loaded by uniformly distributed radial pressure,
shown in Fig. 1. is considered. The arch is assumed to be thin, slightly curved and its axis
is treated as inextensible. Hence a momentless prebuckling state occurs (only the axial force
N.o = —pR differs from zero) and the buckling state can be described by two sets of six
first-order differential equations, one for in-plane and the other for out-of-plane loss of
stability. These equations, the same as in Bochenek and Gajewski (1986). are re-written
here in a more convenient matrix form
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All variables, ic. components of displacement (e, w), angles of rotation (. fi. 7).
increments of internal forces namely bending moments (A, M), twisting moment (M),

Fig. 1. A plane arch loaded by a constant external pressure.
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shear forces (K. K,). and axial force (.V,) are dimensionless and defined in relation to the
coordinate system .xg. vy Z,—normal. binormal and tangent to the arch axis before
buckling. Dimensionless B, and B, are the flexural rigidities, C the torsional rigidity. and
P the external pressure. The definitions of these variables and additional parameters e,
¢,. @, are as follows:
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Dimensional quantitics are marked with asterisks. B%,. B%. C¥ are certain constants to be
defined tater, /* is the length of the arch, and R* the radius of curvature of the undeformed
axis, Symmetric and antisymmetric forms of in-planc and out-of-planc loss of stability
connected with the lowest relevant critical loads py,, arc considered. Indices 1 and m
distinguish the following forms of buckling: / = 1 for symmctric out-of-plance, / = 2 for
antisymmetric out-of-plane, m = 3 tor symmetric in-plane, m = 4 for antisymmetric in-
planc.

As regards the load behaviour in the course of buckling the considerations are conlined
to the case of fixed in space load direction. Morcover, arch ends are clumped so the
boundary conditions for the state equations, eqns (1), are as follows

2(0) = 37(0) = (0) =2,(H) =M () =K,(}) =0

23(0) = 72(0) = 02(0) = 72(}) = 02() =M (H =0

uy(0) = wi(0) = B1(0) = fy(d) = Ky(3) = wy(H) =0

13(0) = wy(0) = f1,0) = M, (3 = () = N.y(}) = 0. 4

Boundary conditions that distinguish symmetric and antisymmetric buckling modes are sct
up for v = | due to the symmetry of the structure in the prebuckling state. Boundary
conditions for s = 0 are given in the form common for both symmetric and antisymmetric
modes. s denotes the independent variable measured along the arch axis.

The cross-section is assumed to be a rectangle and the dimensionless width b and depth
i defined as
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are treated as two independent functional design variables. The cross-sectional arca AJ is
choscen to satisfy

Vo = AN (6)
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where 12, is the minimal volume of the arch and A and # are the optimal control functions.
Flexural rigidities. torsional rigidity and constants B¥,, BY,. C} may be now presented in
the form

I 64b [(nh
= hp? = bli? = kb o — - =
B, =hb'. B, =bh', C=hb [3 . th(z b)]

Bfﬂ [ EAu “ s() = ‘L‘E‘iu . : = GA::- (8)

C has the same approximate form as given previously (Bochenek and Gajewski, 1986)., and
E and G are Young's and Kirchholl's modulus, respectively.

3. THE OPTIMIZATION PROBLEM

The problem of optimal design is to determine two design functions A(s). A(s) that
satisfy the state equations, cqns (1), with boundary conditions (4), normalization condition
(7) and minimize the total volume of the arch under a given external load

P*— 1k

un

p* = const. 9)

I addition, geometrical constraints are imposed on both design functions

by < h(s) € b,
Iy < Isy € b {10

With a view to obtain the necessary optimality condition the Pontryagin maximum
principle is used. Introducing a new variable p, so as to satisty

d
= Vo = bh “ l)
ds

with conditions y(0) = 0, yo(1) = |, adjoint stale vectors
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and assuming, in general, four simultancous modes of buckling corresponding to two lowest

critical loads both for out-of-plane and in-plane loss of stability (quadrimodal formulation),
the Hamiltonian may be written in the form

f, = ‘//()hh"f" i '//:I)Dx)‘(/)‘*_ Z ﬁ(m)D(m).-(m) (l3)

=1 el

It can be proved that the problem under consideration is sclf-adjoint. Hence eqn (13) takes
the form
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In eqn (14) terms that are independent of b or # are omitted. &, and k,, are nonnegative
constants to be determined. If some of the &, or k,, vanish a uni-, bi- or trimodal solution
is obtained.

For two independent design variables b and & the necessary opumahty condition takes
the form of the following set of two equations:

cH cH

—EE= ’ E=0. (IS)

The two transcendental algebraic equations obtained directly from eqns (14) and (15) can
be replaced. after some algebra, by
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Only the first equation is transcendental with respect to n whereas the second is linear with
respect to b°.

4. NUMERICAL EXAMPLES

With the intent to solve the previously stated problem the iterative method proposed
by Grinev and Filippov (1974), later used by other authors (Blachut and Gajewski, 1981a,b;
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Fig. 2. The optimal arch for ¢ = n/2 (bimodal solution) and corresponding optimal functions . f.
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Fig. 5. The optimal arch for & = 293 (quadrimodal solution) and corresponding optimal functions
Ak

Bochenck und Gajewski, 1986) is applicd. The method is treated as known and the details
are not presented in this paper. Numerical integration of the state equations is performed
step-by-step using the fourth-order Runge-Kutta method. Half the arch length is divided
into one hundred parts.

Geometrical constraints Ay, by i, Iy are changed for given steepness & of the arch.
Optimization begins For the prismatic arch for which the lowest critical louds corresponding
to symmetric out-of-plane and antisymmetric in-plane buckling have the same value—
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Fig. 6. The optimal arch for & = 2.3 (quadrimodal solution) and corresponding optimal functions
Ak

bimodal solution. For any set of constraints critical loads connected with the other buckling
modes are calculated for the obtained optimal shape. If one of these loads has a lower value
than the load for an optimal arch. the solution is no longer correct. The trimodal formulation
which equalizes three critical Toads has to be introduced. Analogically, in the case of an
incorrect trimodal solution a quadrimodal formulation must be taken into consideration.

For & = r/2 the starting prismatic arch has the rectangular cross-section with the ratio
b h = 1.62. The analysis of the results of a previous paper (Bochenck and Gajewski, 1986)
leads to the conclusion that among all prismatic arches with rectangular cross-section
loaded by the same buckling load the one with A/t = 1.62 has the lowest volume —the
optimal bimodal prismatic arch. Furthermore, optimization with respect to only one design
variable gives the volunie reduction of about 10%.

IFor the purpose of comparison of those results with the ones obtained in the approach
of this paper for two independent design functions - detailed caleulations for ¢ = 7/2
were performed. The results are presented in Figs 2-4 where optimal functions A(s). Is)
and arch shape for certain geometrical constraints are shown. In addition, the values of the
volume reduction coceflicient ¢, which is delined as
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are given. [t turns out that the volume reduction is greater than in the case of once design
variable for the sume starting prismatic arch. On the other hand optimal shapes are more
complicated as to the mass distribution.

It is worth underlining that in order to pay attention on qualitative features of gained
effects the A(s) and () diagrams are presented with two different scales for abscissa and
ordinate axes. Transverse dimensions arc multiplied by 10, hence, to show reul proportions
between arch length and cross-sectional dimensions one has to divide them by 10. The arch
is thin and the mass distribution changes slightly.

Figures § and 6 show optimal arches for steepness parameter € = n,/4 and 2r/3. Pres-
entation is confined to quadrimodal solutions only.
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